

Graphical user interface tool for embedded systems - www.easygui.com

Company: IBIS Solutions ApS. Torvevangen 24, DK-4550 Asnaes, Denmark. Phone: +45 7022 0495 Fax: +45 7023 0495
VAT No.: DK 27 06 03 07 Mail: sales@ibissolutions.com Web: www.ibissolutions.com
Please observe that our office hours follow the Greenwich Mean Time (GMT) + 1 hour.
All information included in this document is stated in good faith, but IBIS Solutions ApS cannot guarantee its completeness and accuracy. IBIS Solutions ApS
does not accept any liability to you or any third party for any error or omission of the information. IBIS Solutions ApS may change, update or delete any of
the information without prior notice. Not all information in this document may pertain to you. Copyright © IBIS Solutions ApS

1 of 2

Working with easyGUI & Linux
easyGUI can be used with almost any compiler and RTOS. Also systems based on embedded
Linux can utilize easyGUI. There are three categories of Linux drivers:

1. A driver using the Linux virtual frame buffer device, working from user space.
2. A driver which writes directly to ports, working from user space.
3. A driver which works as a module from kernel space.

Currently easyGUI has several drivers of category 1, e.g. The AT32AP7000 driver and the
TS7390 driver. Basically they are more or less identical. The easyGUI drivers for the Linux
operating system uses the Linux frame buffer device, which serves as a “virtual” frame buffer
for accessing the underlying physical frame buffer. The drivers works from user space, and
uses method of mapping the entire frame buffer to a given memory range, because the
physical frame buffer in hardware memory can’t be access directly. For gaining access to
physical frame buffer memory the driver uses the mmap() function, which returns a pointer to
the start of the mapped frame buffer. For setting color depth and resolution of the display the
data structure fb_var_screeninfo is used (declared in fb.h). This structure is also accessible
from user space.

GuiDisplay_Init function

This initialization routine first fetches a file descriptor (a small, non-negative integer for use in
subsequent I/O as with read, write, etc.). This file descriptor is gained through the system call

http://www.easygui.com/
mailto:sales@ibissolutions.com

Graphical user interface tool for embedded systems - www.easygui.com

Company: IBIS Solutions ApS. Torvevangen 24, DK-4550 Asnaes, Denmark. Phone: +45 7022 0495 Fax: +45 7023 0495
VAT No.: DK 27 06 03 07 Mail: sales@ibissolutions.com Web: www.ibissolutions.com
Please observe that our office hours follow the Greenwich Mean Time (GMT) + 1 hour.
All information included in this document is stated in good faith, but IBIS Solutions ApS cannot guarantee its completeness and accuracy. IBIS Solutions ApS
does not accept any liability to you or any third party for any error or omission of the information. IBIS Solutions ApS may change, update or delete any of
the information without prior notice. Not all information in this document may pertain to you. Copyright © IBIS Solutions ApS

2 of 2

open(), which is used for conversion from pathname of devices. Next is the system call
ioctl() for retrieving and setting frame buffer settings x resolution, y resolution and color
depth - this is a special subroutine call that transfers the operating system from user mode to
kernel mode, because the easyGUI driver works in user space, and can’t directly access kernel
code. It is the user’s responsibility to set only values which are supported by the underlying
frame buffer driver module. The last step is to gain a pointer to mapped frame buffer
memory through calling function mmap(), which can be used to access the frame buffer as a
normal standard pointer to array. The initialization routine also clears the frame buffer.

GuiDisplay_Refresh function

This function copies data changed since last call from the internal easyGUI display buffer to
the Linux frame buffer. The exact data pointer is calculated from the start address pointer
(from the initialization routine) and the chosen resolution.

http://www.easygui.com/
mailto:sales@ibissolutions.com

	Working with easyGUI & Linux
	GuiDisplay_Init function
	GuiDisplay_Refresh function

